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Two person zero-sum fuzzy matrix games and 
extensions 

 
Rajani Singh, Ashutosh Dhar Dwivedi 

 
Abstract- In this work, fuzzy linear programming problems (FLPP) and their implementations is being done in two person zero-sum fuzzy matrix game 
theory, based on Bector, Chandra and Vijay [2] model. Verification of solution of all possible type of  two person zero-sum game  is done by solving 
examples by numerical method. 
    Generalized fuzzy set first introduced by Atanassov (1986) which is called I-fuzzy set has been studied and using this knowledge, application in 
(FLPP) and two person zero-sum matrix games with I-fuzzy goals is given. At the end I gave useful MATLAB codes for solving all three type of two 
person zero-sum fuzzy matrix games, with fuzzy goals, with  fuzzy pay-offs and with both fuzzy goals and  fuzzy pay-offs. 
 
Keywords-Two person zero-sum games; Fuzzy sets; I-fuzzy set; Fuzzy Linear programming problems; Pareto-optimal security strategy. 

——————————      —————————— 
 

1. INTRODUCTION 

Similar to fuzzy linear programming problems fuzziness 

in matrix games can also come. In the game players may 
have fuzzy goals and/or the entries of the pay-off matrix are 
fuzzy number.  
 In this paper we discuss about different types of 
two person zero-sum fuzzy matrix game with all type of 
possibilities for fuzziness and their conversion in linear 
programing problems (LPP’s). 
 In real decision making problems there are 
instances where not only the degree to which an object 
belongs to a set is known but in addition a degree to which 
the same object does not belong to the set is also known.  
 Atanassov (1986) proposed a generalized approach 
of fuzzy set is called I-fuzzy set.  We used this special type 
of set to solve two person zero-sum matrix games with I-
fuzzy goals. 
  There are three types of two person zero-sum 
matrix games listed as,  
o Two person zero-sum matrix games with fuzzy goals. 
o Two person zero-sum matrix games with fuzzy pay-

offs. 
o Two person zero-sum matrix games with fuzzy goals 

and fuzzy Pay-offs. 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
2. Two person zero-sum matrix games with 

fuzzy goals: 
Let A ∈ Rmxn be a pay-off matrix and Sm = {x ∈ Rm :∑ xim

i=1  = 
1, xi ≥ 0, ∀ i=1, 2 , . . . , m} and Sn = {x ∈ Rn : ∑ xjn

j=1  = 1,  xj ≥ 
0,  ∀ j=1, 2 , . . . , n} be the  strategies spaces for player I and 
player II respectively. 
 Let v0 and w0 be aspiration levels for player I and 
player II respectively and p0 and q0 be the tolerances for 
player I and player II respectively, then the two person 
zero-sum matrix game with fuzzy goals is denoted by FG 
and is defined as , FG = (Sm, Sn, A, v0, ≳, p0, w0, ≲, q0) 
where, ≳ (≲) is essentially greater (less) than or equal to 
sign. 
 
Solution of the fuzzy matrix game (FG):  
An ordered pair (x�,y�) is said to be a solution of the two 
person zero-sum matrix game with fuzzy goals FG if  

(x�)TAy ≳𝑝0 v0          for all y ∈ Sn, 
And            xTAy� ≲𝑞0w0            for all x ∈ Sm 
 
Conversion of fuzzy matrix game FG into fuzzy linear 
programming  
(FP-1)            Find   x ∈ Rm   
Such that         xTAy ≳p0  v0,      for all y ∈ Sn 
                       ∑ xim

i=1  = 1 
                                  x ≥ 0  
(FP-2)            Find   y ∈ Rn   
Such that        xTAy ≲q0  w0,     for all x ∈ Sm  

———————————————— 
• Rajani Singh, Indian Institute of Technology, Delhi, 

India,  E-mail: rajanibabu7@gmail.com 
• Ashutosh Dhar Dwivedi, Amity School of Computer 

Sciences, Noida, India, E-mail: ashudhar7@gmail.com 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May-2016                                                                                                     861 
ISSN 2229-5518 

                      ∑ yjn
j=1  = 1 

                                  y ≥ 0 
 
Let Aj (j=1,2,…n) and Ai (i=1,2,…m) denote the jth column 

and ith row of the matrix A respectively . Then  
(FP-3)          Find   x ∈ Rm                                                                                                   
  Such that     Aj

Tx ≳p0  v0 ,            ∀ j=1, 2, . . . , n     
                    ∑ xim

i=1 = 1 
                              x ≥ 0 
(FP-4)         Find   y ∈ Rn                                                                                      
        Such that  Ai y ≲q0  w0,         ∀ i=1, 2, . . . , m     
                     ∑ yjn

j=1  = 1 
                                y ≥ 0 
Membership function for jth constraint of (FP-3) is given as   

µj(Aj
Tx) = 

⎩
⎪
⎨

⎪
⎧ 1                   for  Aj

Tx ≥ v0,

1−
v0−Aj

Tx

p0
        (v0 − p0) ≤ Aj

Tx < v0

   0                                 Aj
Tx < (v0 − p0).

, 

and the membership function for  ith constraint of (FP-4) is,   

 ϑi(Ai
 y) = 

⎩
⎪
⎨

⎪
⎧ 1                       for  Ai

 y ≤ w0

1− Ai
 y−w0
q0

           w0 < Ai
 y ≤ w0 + q0

          0                                Ai
 y > w0 + q0

 

Then the fuzzy linear programming (FP-3) and (FP-4) 
becomes 
(FLP)                      max λ 
Subject to,        Aj

Tx ≥ v0- (1- λ)p0           ∀ j = 1, 2, …, n 
                      ∑ xim

i=1 = 1 
                                λ ≤  1 
                            x, λ ≥ 0 
(FLD)                   max η 
Subject to,        Aiy ≤ w0 +(1- η)q0         ∀ i = 1, 2, …, m 
                   ∑ yjn

j=1  = 1 

                              η ≤  1 
                          y, η ≥ 0 
 
Remark 2.1 The crisp linear programming problems (FLP) 
and (FLD) are primal-dual pair in the fuzzy sense, not in 
crisp sense. 
 
Remark 2.2 If both players have the same aspiration levels 
i.e.  v0  = w0 and in the optimal solutions of (FLP) and (FLD)  
λ∗  = η∗ = 1, then the fuzzy game FG reduces to crisp two 
person zero-sum game G. 
 
Example 2.1 Solve the two person zero-sum matrix game 
with fuzzy pay-offs FG whose pay-off matrix A is given by  

 A = �
1 3 0
4 7 2
3 5 6

�,   with v0 = 5/3 , w0 = 3/2 and p0 = 2 , q0 = 

3. 
 
Solution   
 (FLP)                      max λ 
Subject to;      2λ - x1 - 4x2 - 3x3 ≤ 1/3  
                       2λ - 3x1 - 7x2 - 5x3 ≤ 1/3 
                                2λ - 2x2 - 6x3 ≤ 1/3 
                                    x1 + x2 + x3 = 1 
                                                   λ ≤ 1 
                                    x1, x2, x3, λ ≥ 0 
  (FLD)                     max η 
Subject to;              3η + y1 + 3y2 ≤ 9/2 
                     3η + 4y1 + 7y2 + 2y3 ≤ 9/2 
                     3η + 3y1 + 5y2 + 6y3 ≤ 9/2  
                                    y1 + y2 + y3 = 1 
                                                    η ≤ 1 
                                    y1, y2, y3, η ≥ 0 
The optimal solution and optimal value for (FLP) (i.e. for 
player I) is x* = (0.0271, 0.4233, 0.5496) and  λ* = 1.0000 and 
the optimal solution and optimal value for (FLD) (i.e. for 
player II) is y* = (0.8000, 0.0000, 0.2000) and   η* = 0.3000. 
 
3. Two person zero-sum matrix games with 

Fuzzy Pay-offs: 
Two person zero-sum matrix game with fuzzy pay-offs is 
the triplet  G� =(Sm, Sm, A�). 
 
Reasonable values (𝐯�,𝐰�) of the game𝐆�: 
(v� , w� ) is called a reasonable solution of the fuzzy matrix 
game FG if there exists x∗  ∈ Sm ,  y∗  ∈ Sn  satisfying  
(x∗)T A� y ≳ v�   , ∀   y ∈ Sn and  xTA�y∗ ≲ w�  , ∀   x ∈ Sm. 
 
Solution of the Fuzzy Matrix Game𝐆�: 
T1= {v�  ∈ N(R): v�  is reasonable value for Player I}, T2={w�  ∈ 
N(R): w�  is reasonable value for Player II}.Let there exist 
v�∗∈ T1, w� ∗ ∈ T2 such that  F(v�∗) ≥ F(v�) , ∀ v�  ∈ T1  and  
F(w� ∗) ≤ F(w�  ) , ∀ w�∈ T2 then (x∗, y∗, v�∗,w� ∗) is called the 
solution of the game G�. 
 
Conversion of fuzzy matrix game 𝐆� into LPP: 
 (FP)                            max F(v�) 
 Subject to,         ∑ a�ijm

i=1 xi  ≳ v�- (1-λ)p�           ∀ j = 1,2,…,n  

                                         eTx = 1,      
                                               x ≥0 ,  
                                                0≤ λ ≤ 1 ,    
 
   (FD)                          min F(w� ) 
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Subject to            ∑ a�ijn
j=1 yj ≲ w�+(1-η) q�          ∀ i = 1,2,…,m  

                                           eTy = 1,       
                                                y ≥0,   
                                                  0≤ η ≤ 1 ,      
By using the defuzzification function F: N(R) →R for the 
constraints (FP) and (FD) problems can be rewritten as: 
  (FP1)                               max F(v�) 
  Subject to , ∑ F( a�ij)m

i=1 xi ≳ F(v)� - (1-λ)F(p� )             

                                           eTx = 1,                         ∀j = 1, 2,…, n                           
                                                 x ≥0 ,  
                                                  0≤ λ ≤ 1 ,  
  (FD2)                             min F(w� ) 
 Subject to,   ∑ F(a�ijn

j=1 )yj ≳ F(w�)+(1- η) F(q�)         

                                           eTy = 1,                      ∀ i = 1, 2,…, m 
                                                y ≥0,   
                                                 0≤ η ≤ 1 , 
 
Example 3.1 Consider the fuzzy matrix game with fuzzy 
payoff matrix 

� (175,180,190) (150,156,158)
(80,90,100) (175,180,190) � 

Where (al, a, au) is a triangular fuzzy number p1� , assume 
that Player I and Player II have the margins p1� =
p2� =(0.08, 0.10, 0.11), and  q1� = q2� = (0.14, 0.15, 0.17). 
Solution 
To solve this game, following two crisp linear 
programming problems (LP) and (LD) is needed to be 
solving for Player I and Player II respectively: 

(LP)                              max V=
(v1+v2+v3)

3
 

   Subject to, 545x1 + 270x2 ≥ 3V − (1 − λ)*(0.29) 
                       464x1 + 545x2 ≥ 3V − (1 − λ)*(0.29) 
                                   x1 + x2 = 1 
                                              λ ≤ 1 
                                 x1, x2, λ ≥ 0, 
 

(LD)                              min W=
(w1+w2+w3)

3
 

Subject to,     545y1 + 464y2 ≤ 3W + (1 − η)*(0.46) 
                       270y1 + 545y2 ≤ 3W + (1 − η)*(0.46) 
                                   y1 + y2 = 1 
                                              η ≤ 1.                         
                                  y1,y2, η ≥ 0. 
Solving the above (LP) and (LD), the values are, (x1∗=0.7725, 
x2∗= 0.2275, V = 160.91, λ∗= 0) and (y1∗= 0.2275, y2∗=0.7725, W 
= 160.65, η∗= 0) respectively. Therefore, optimal strategies 
for Player I and Player II are (x1∗= 0.7725, x2∗= 0.2275) and 
(y1∗= 0.2275, y2∗  = 0.7725) respectively. 
Remark 3.1 Here F(v�) and F(w� ) are used which is in crisp 
sense instead of using  v�  and w�  in fuzzy sense in objective 
function of (FP) and (FD). So it gives an average of fuzzy 

values instead of fuzzy value for Player I and Player II. 
      Therefore, another method which is based on “Pareto-
optimal security strategies” used to solve two person zero-
sum matrix games with Fuzzy Pay-offs. 
 
4. Pareto-optimal security strategies in 

matrix games with fuzzy payoffs: 
 If the membership function is given by a piecewise linear 
function then it has a finite number of pieces and therefore 
only a finite number of different α-cut sets is used to 
exactly describe the corresponding fuzzy number. Set of 
cuts is defined as γ = {α1, α2, … . . ,αr} ⊂ [0, 1]   
with  α1 <  α2 < ⋯ < αr−1 < αr =1 
α-cut of a fuzzy number  can be defined as  a�   by 
  aα�  = [aα1  ,aα2 ] where,  aα1 = inf (aα)  and   aα2 =sup (aα). 
 
Standard ranking function: 
A function f: N(R) →Rr ∗2 such that,  f (a�) = (pij(a�)) ∈ Rr ∗2  

where pij(a�) = aαi
 j

 ,  i = 1,…, r and  j = 1, 2. 
 
Standard fuzzy order: 
A fuzzy order, ≲ is standard if there exists a standard 
ranking function f such that,   a� ≲ b�  ⇔ f (a�) ≤ f (b� ) with  
a� ,  b�  ∈ N(R), where ≤ is the component wise order on   
Rr ∗2. 
 
Security Level: 
The security level of player I for strategy x ∈ Sm is a fuzzy 
number v(x)�∈ N(R) such that        

          f (v(x)�) = infy ∈ Sn  pij(E(x, y)� )          i=1...r and j=1, 2.  
The security level of player II for strategy y ∈ Sn is a fuzzy 
number v�(y)�∈ N(R) such that                                
           f (v�(y)�) = supx ∈ Sm  pij(E(x, y)� )      i=1...r and j=1, 2.  
 
Pareto-optimal security strategy (POSS): 
A strategy x∗ ∈ X is a Pareto-optimal security strategy 
(POSS) of the game  G� using the standard fuzzy order for 
player I iff there is no x ∈ X such that v(x ∗)� ≲ v(x ∗)� . 
Similarly, one can define POSS for player II. 
FLP and MLP Equivalence: 
(FLP)                      max  v�  
Subject to,         xTA� ≳ v�          
                                  x ∈ Sm , 
 
Where c� and b�  are fuzzy vectors and  A� is a matrix with 
fuzzy entries 
(MLP)                   max (vij)               i = 1… r  and  j = 1, 2 

Subject to, xT( A�αi
 j

) ≥ vij*eT       ∀ i, j 

                                  x ∈ Sm 
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Example 4.1 Consider the fuzzy matrix game with fuzzy 
payoff matrix 

                        � (175,180,190) (150,156,158)
(80,90,100) (175,180,190) � 

Where (al ,  a , au) is a triangular fuzzy number. 
Solution 
Assume that player I wishes to solve the above game using 
a standard fuzzy order with set of cuts γ = {0, 1} 

Aαi= [( a − al) αi + al , - ( au − a) αi+au] 
Take α1=0 and α2=1 to get, 

𝐴α1
1 = �175 150

80 175� , 𝐴α1
2 =  �190 158

100 190�,                                           

 𝐴α2
1 =�180 156

90 180�,  𝐴α2
2 =�180 156

90 180�. 
Use (FLP) and (MLP) equivalence to get the (MLP) as, 
(MLP)           Max   v11, v12, v21                     
 Subject to,   175x1 + 80x2 ≥v11  ,  
                    150x1 + 175x2 ≥v11 , 
                    190x1 + 100x2 ≥v12 ,  
                    158x1 + 190x2 ≥v12 ,  
                      180x1 + 90x2 ≥v21 , 
                    156x1 + 180x2 ≥v21 , 
                                x1 + x2 = 1, 
                                  x1, x2 ≥ 0 
Solving this (MLP) POSS strategy for player I is x∗= (0.7916, 
0, 0.2084) and its security level as v∗� = (161, 6.79, 3.67).  
 
5. Two person zero-sum matrix game with  

I-fuzzy goals: 
I-fuzzy set (Intuitionistic fuzzy set): 
Let X be a universal set. An I-fuzzy set A in X is described 
by A = {〈x,µA(x), νA(x)〉| x ∈ X}, where μA : X → [0, 1] 
and νA  : X → [0, 1] define respectively the degree of 
belongingness and the degree of non-belongingness of an 
element x ∈ X to the set A with 0 ≤ μA(x) + νA(x) ≤ 1.  
 If μA(x) + νA (x) = 1, ∀ x ∈ X, then A degenerates to a 
standard fuzzy set in X. 
 
Union and intersection: 
Let A and B be two I-fuzzy sets in X, their union and 
intersection are I-fuzzy sets defined respectively as 
A∪B={〈x, max{µA(x),µB(x)} , min{νA(x), νB(x)}〉  
Such that x ∈ X } and 
A∩B = {〈x, min{µA(x),µB(x)}, max{νA(x), νB(x)}〉 
 Such that  x ∈ X}. 
 
Score function: 
Let A be an I-fuzzy set in X, then the score function is 
defined as, S(x) = µA(x) - νA(x) ∀ x ∈ X. 
 

5.1 The pessimistic approach to defining the     I-
fuzzy statement  x (I F) ≳ a:  

Let {〈x, µ(x), ν(x)〉| x ∈ X} be an I-fuzzy set.  
          In this approach the decision maker takes extra 
cautious for acceptance. That is, even if the degree of 
rejection of x is zero, the decision maker is not accepting 
totally. To represent this situation, assume that the 
tolerances are p and q with 0 < q < p, then the membership 
function is given as  

    µ(x) = �
1                        x ≥ a,

1 − a−x
p

           a − p < x < a,

   0                             x ≤ a − p;

 

 and the non-membership function is given as   

ν(x) = �
1                x ≤ a − p,

1 − x−a+p
q

       a − p < x < a − p+, q

   0                      x ≥ a − p + q.

 

 
Figure 1 

 
Note 5.1 There is an interval [a – p + q, a] in which the non-
membership degree is zero but the membership degree is 
not one.  
 
5.2 The optimistic approach to defining the I-fuzzy 

statement   x (I F) ≳ a: 

Let { 〈x, µ(x), ν(x)〉 | x ∈ X} be an I-fuzzy set.  In 
optimistic approach the decision maker is not rejecting 
totally even if the degree of acceptance of x is zero. To 
represent this situation, there for certain tolerances p, q, the 
membership function is given as  

     µ(x) = �
1                          x ≥ a,

1− a−x
p

            a − p < x < a

   0                              x ≤ a − p;

, 

and the non-membership function is given as   

ν(x) = �
1                                                  x ≤ a − p − q,

1 − x−a+p+q
p+q

      a − p − q < x < a,

   0                                x ≥ a.
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Figure 2 

 
Note 5.2.1 There is an interval [a - p - q, a - p] in which the 
membership degree is zero but the non-membership degree 
is not one.  
 
Remark 5.2.1  x (I F) ≲ a  if and only if  (-x) (I F) ≳ (-a). 
 
Decision making in I-fuzzy environment: 
Let X be any set. Let Gi, for all i = 1, 2, . . . , r, be the set of r 
goals and Cj , for all j = 1, 2, . . . ,m, be the set of m 
constraints, each of which can be characterized by an I-
fuzzy set on X . The  I-fuzzy decision is given by,  
D = (G1 ∩ G2 ∩ · · · ∩ Gr) ∩ (C1 ∩ C2 ∩ · · · ∩ Cm) is an I-fuzzy 
and it is defined as , D = {〈x, µD(x), νD(x)〉| x ∈ X}, 
Where,  µD(x) = min   

i,j
{µGi(x), µCj(x)}  and 

 νD(x) = maxi,j{νGi(x), νCj(x)}. 
 
I-fuzzy linear programming and duality:  
Let Rn denote the n-dimensional Euclidean space. Let c ∈ 
Rn, b ∈ Rm,  and  A ∈Rm×n. Consider a general model for an I-
fuzzy linear programming problem (IFP) in which the 
aspiration level Z0 for the objective function is indicated by 
the decision  maker. 
(IFP)                     Find   x ∈ Rn   
Such that       cTx  (I F) ≳ Z0   
                         Ax  (I F) ≲ b 
                                          x ≥ 0  
(IFD)                    Find   y ∈ Rm   
Such that      bTy  (I F) ≲  W0 
                       ATy  (I F) ≳ c 
                                          y ≥ 0 
Where W0  is an aspiration level for the dual objective. 
 
Duality under pessimistic approach: 
Consider the I-fuzzy primal problem (IFP). Let pi, qi, 0 < qi 
< pi, i = 0, 1, . . . , m, denote the tolerances associated 
respectively with the acceptance and the rejection of m + 1 
constraints in (IFP). Also, let α, β denote the minimal 
degree of acceptance and the maximal degree of rejection 
respectively of the m + 1 constraints of the primal problem 
(IFP). The I-fuzzy optimization problem (IFP) under 
pessimistic scenario is equivalent to the following crisp 

optimization problem 
(IFPC)                   max( α – β) 
Subject to     (1 − α) p0 + cT x − Z0 ≥ 0 
                              (1 − α) pi − Ai x + bi≥ 0          for all  i = 1, . . . , m 
            (1 − β) q0 − cT x + (Z0 − p0) ≤ 0 
            (1 − β) qi + Ai x − (bi + pi)   ≤ 0           
                                                  α + β ≤ 1  
                                                α ≥  β  ≥ 0    
                                                         x ≥ 0. 
Next we consider the I-fuzzy dual problem (IFD).   
Let sj, tj , 0 < tj < sj, j = 0, 1, . . . , n, be the tolerances 
associated respectively with the acceptance and rejection of 
the n + 1 constraints in (IFD). Let δ and η respectively 
denote the minimal degree of acceptance and the maximal 
degree of rejection of n + 1 constraints of the dual problem 
(IFD). Analogous to the discussion above, the I-fuzzy 
optimization problem (IFD) is equivalent to the following 
crisp optimization problem 
(IFDC)              max    δ − η 
 Subject to      (1 − δ) s0 − bTy + W0 ≥ 0 

           (1 − δ) sj + AT jy − c j ≥ 0       for all j = 1, . . . , n 
               (1 − η) t0 + bTy − (W0 + s0) ≤ 0 
                (1 − η) t i − ATj y + (cj − sj) ≤ 0           

                                          δ + η ≤ 1,   
                                                 δ ≥ η  ≥ 0,    
                                                w ≥ 0. 

Remark 5.2.2 The pair (IFPC) and (IFDC) is termed as I-
fuzzy primal-dual pair. 
 
5.3 Two person zero-sum matrix game with I-fuzzy 

goals: 

Let A ∈ Rm×n  be a real matrix. Let U0 and V0 be the 
aspiration levels for player I and II respectively, then the 
two person zero-sum matrix game with I-fuzzy goals is 
defined as, FG = (Sm, Sn, A, U0, (I F)≳, p0, q0 ; V0, (I F)≲, s0, 
t0). 
Where Sm and Sn are strategies spaces for player I and II 
respectively.p0 and q0 respectively are the tolerances pre-
specified by player I for accepting and rejecting the 
aspiration level U0. Similarly, s0 and t0 respectively are the 
tolerances pre-specified by player II for accepting and 
rejecting the aspiration level V0. 
 
Solution of the I-fuzzy matrix game IFG: 
An ordered pair (x�, y�) ∈ Sm x Sn is said to be a solution of 
the two person zero-sum matrix game with fuzzy goals IFG 
if                     x� P

TAy (I F)≳ U0          for all y ∈ Sn, 
And               xTAy�  (I F)≲ V0          for all x ∈ Sm 
Since Sm and Sn are convex polytopes, it is sufficient to 
consider only the extreme points of Sm and Sn. Therefore, 
the problem of finding a solution of IFG is equivalent to 
solving the following two I-fuzzy linear programming 
problems 
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(IFG1)                         Find   x ∈ Sm   
Such that   ∑ aijxim

i=1 (I F) ≳ U0,          ∀ j=1, 2, . . . , n 
                                    ∑ xim

i=1  = 1 
                                                 x ≥ 0  
(IFG2)                         Find   y ∈ Sn   
Such that  ∑ aijyjn

j=1  (I F) ≲  V0,           ∀ i=1, 2, . . . , m 
                                    ∑ yjn

j=1  = 1 
                                                y ≥ 0 
Here (IFG1) is the I-fuzzy linear programming problem for 
player I and (IFG2) is the I-fuzzy linear programming 
problem for player II.  
Assume that both players have pessimistic view points for 
their I-fuzzy aspiration levels. In other words, it amounts to 
saying that U0 − p0 < U0 − p0 + q0 < U 0 and V0 < V0 + s0 − t0 
< V0 + s0, i.e., 0 < q0 < p0 and 0 < t0 < s0.  

   Let α denote the minimal degree of acceptance and β 
denote the maximal degree of rejection of the constraints of 
(IFG1). Similarly let δ denote the minimal degree of 
acceptances and η denote the maximal degree of rejection 
of the constraints of (IFG2). Then the two I-fuzzy linear 
programming problems are respectively equivalent to the 
following two crisp optimization problems. 
(CFP1)                    Max    α − β 
Subject to,  (1 − α) p0 + Aj

T  x − U0  ≥ 0                j = 1, 2, . . . , n 

     (1 − β) q0 −  Aj
T  x + (U0 − p0 ) ≤ 0  

                                          ∑ xim
i=1  = 1 

                                                      x≥ 0 
                                                     α ≥ β ≥ 0,  α + β ≤ 1. 
(CFP2)                     Max    δ − η 
Subject to     (1 − δ) s0 − Ai y + V0 ≥ 0                i = 1, . . . , m 

   (1 − η) t0 + Ai·  y − (V0 + s0) ≤ 0      
                                    ∑ yjn

j=1  = 1 
           y≥0       
                                                            δ ≥ η ≥ 0,  δ + η ≤ 1. 

Here Aj and Ai denote the j th column and the i th row of A, 
respectively. 
6. CONCLUSIONS 
 
We tried to study various type of two person zero sum  
fuzzy matrix games and their conversion into fuzzy linear 
programming problems to solve the games given in 
examples which  are given in textbooks .  
 We also verify the solution by numerical methods. 
Main work is use of  pareto optimal security strategies 
which uses muliobjective linear programming to solve the 
game when the game has fuzzy matrix and fuzzy pay-offs . 
 Introduction of  I-fuzzy set  is given and  
application of  I-fuzzy set  in two person zero sum game  is 
given  as an extension of these games which is very 
advance in game theory. 
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APPENDIX A 
 
A.1   MATLAB code for two person zero-sum matrix 
game with fuzzy goals: 
A=input ('Enter the pay-offs matrix A = '); 
v0=input ('Enter the aspiration level of Player 1st  v0 = '); 
w0=input ('Enter the aspiration level of Player 2nd  w0 = '); 
p0=input ('Enter the tolerance error of Player 1st   p0 = '); 
q0=input ('Enter the tolerance error of Player 2nd   q0 = '); 
 fprintf ('\n \n\n');    % for player 1st   
fprintf ('(FLP)'); 
x=sym ('x',[length(A(:,1)),1]); 
syms v; 
fprintf (' max '); 
disp (v); 
fprintf ('subject to;  \n'); 
disp(-A'*x+p0*v <=p0-v0); 
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disp(v<=1); 
disp(sum(x)==1); 
disp(x>=0);  
disp(v>=0);  
fprintf ('\n \n\n');     %for player 2nd   
fprintf ('(FLD)'); 
y=sym('y',[length(A(1,:)),1]); 
syms w; 
fprintf(' max '); 
disp(w); 
fprintf('subject to;  \n'); 
disp(A*y+q0*w <=w0+q0); 
disp(w<=1); 
disp(sum(y)==1); 
disp(y>=0); 
disp(w>=0); 
 
A.2   MATLAB code for two person zero-sum matrix 
game with fuzzy pay-offs: 
m=input('no. of rows in matrix:m = '); 
n=input('no. of columns in matrix:n = '); 
disp('Enter the elements of fuzzy matrix in [al a au] form '); 
for i=1:m 
for j=1:n 
a=input(''); 
A(i,j)=sum(a); 
end 
end 
disp('Matrix is..\n'); 
A 
disp('Enter the tollerence for player 1st in [pl p pu] form '); 
p=input('p = '); 
p=sum(p) 
disp('Enter the tollerence for player 2nd in [ql q qu] form '); 
q=input('q = '); 
q=sum(q) 
disp('V=(vl+v+vu)\3');   % for player 1st 
fprintf('\n \n\n'); 
fprintf('(LP)'); 
x=sym('x',[m,1]); 
syms V; 
fprintf(' max '); 
disp(V); 
fprintf('subject to;  \n'); 
syms c; 
disp(-A'*x+3*V+c*p <=p); 
disp(sum(x)==1); 
disp(c<=1); 
disp(x>=0); 
disp(c>=0); 
disp('W=(wl+w+wu)\3');   %for player 2nd 
fprintf('\n \n\n'); 
fprintf('(LD)'); 
y=sym('y',[n,1]); 

syms W; 
fprintf(' min '); 
disp(W); 
fprintf('subject to;  \n'); 
syms d; 
disp(-3*W+A*y+q*d <=q ); 
disp(d<=1); 
disp(sum(y)==1); 
disp(y>=0); 
disp(d>=0); 
f1=-[1;zeros(m+1,1)];  %solution of (FLP) 
B1=[[3*ones(n,1);1],[p*ones(n,1);1],[-A';zeros(1,m)]]; 
b1=[(p)*ones(n,1);1]; 
B1eq=[0,0,ones(1,m)]; 
b1eq=1; 
lb1=zeros(m+2,1)'; 
X=linprog(f1,B1,b1,B1eq,b1eq,lb1); 
fprintf('\n FOR PLAYER 1st \n') 
fprintf('\n The optimal value of (FLP) is \n %f \n',X(1,1)); 
fprintf('\n The optimal solution of (FLP) is \n  '); 
disp(X(2:m+2,1)); 
f2=-[1;zeros(n+1,1)];  %solution of (FLD) 
B2=[[(-3)*ones(m,1);1],[q*ones(m,1);1],[A;zeros(1,n)]]; 
b2=[q*ones(m,1);1]; 
B2eq=[0,0,ones(1,n)]; 
b2eq=1; 
lb2=zeros(n+2,1)'; 
Y=linprog(f2,B2,b2,B2eq,b2eq,lb2); 
fprintf('\n FOR PLAYER 2st \n') 
fprintf('\n The optimal value of (FLD) is \n %f \n',Y(1,1)); 
fprintf('\n The optimal solution of (FLD) is \n  '); 
disp(Y(2:n+2,1)); 
 
A.3 MATLAB code for two person zero-sum matrix 
game with fuzzy pay-offs using multi-objective linear 
programming:  
m=input('no. of rows in matrix   :m = '); 
n=Input('no. of columns in matrix  :n = '); 
r=input('Enter no of cuts          :r = '); 
disp('Enter the elements of fuzzy matrix in(al a au) form '); 
for  c=1:r 
disp('Enter the value of alpha'); 
alpha=input(''); 
for i=1:m 
for j=1:n 
al=input('al:'); 
a=input('a:'); 
au=input('au:'); 
C(i,j)=(a-al)*alpha+al; 
D(i,j)= (-(au-a)*alpha)+au; 
end 
end 
C 
D 
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end 
fprintf('\n \n\n');         % for player 1st 
fprintf('(MLP)'); 
x=sym('x',[m,1]); 
fprintf(' max v11 ,v12 ,v21'); 
fprintf('subject to;  \n'); 
for k=1:r 
disp(-C'*x <=-v(k,k)); 
disp(-D'*x <=-v(k,k+1)); 
end 
disp(sum(x)==1); 
disp(x>=0); 
disp('W=(wl+w+wu)\3');    %for player 2nd 
fprintf('\n \n\n'); 
fprintf('(LD)'); 
y=sym('y',[n,1]); 
syms d; 
fprintf(' min '); 
disp(W); 
fprintf('subject to;  \n'); 
disp(A*y-3*W+q*d <=d ); 
disp(d<=1); 
disp(sum(y)==1); 
disp(y>=0); 
disp(d>=0); IJSER




